





Public Sector Data Centres Best Practice Procurement of an Energy Efficient Data Centre (Case Study)

Steve Bowes-Phipps BSc (Hons) MBCS CDCDP AUH 12 November, 2015

Best Practice Procurement of an Energy Efficient Data Centre (Case Study)



- 1. About Me
- 2. Reduction And Re-use of Energy in Institutional Data Centres (RARE-IDC)
- 3. Planning Green Data Centres
- 4. Best Practice Solutions
- 5. Measuring Success







# 1 About Me

## About Me



#### Steve Bowes-Phipps

- Over 25 years of operational systems management experience
- Managed data centres for over 20 years
- Worked at the University of Hertfordshire 2007 2014
- A member of the Data Centre Alliance Energy Efficiency group, the EU Code of Conduct for Data Centres Best Practices Committee and regular speaker on Data Centre Best Practice

#### University of Hertfordshire

- UK's leading business-facing university and an exemplar in the sector
- One of the region's largest employers with over 2,650 staff and a turnover of almost £233 million
- A student community of over 27,200 including more than 2,800 students from eighty-five different countries, the University has a global network of over 175,000 alumni
- One of the top 100 universities in the world under 50 years old, according to the new Times Higher Education 100 under 50 rankings 2012
- Sector leader in environmental management ranked top ten in the People and Planet Green League for each of the last five years







2 Reduction And Re-use of Energy in Institutional Data Centres (RARE-IDC) Reduction and Re-use of Energy in Institutional Data Centres (RARE-IDC)





Data Centre Leaders Award Winner 2010

"Innovation in a Micro-Data Centre"

Uptime Institute Green Enterprise IT Award<sup>™</sup> Winner 2011 "Innovation in a Smaller Data Centre <1000 sq ft"





First University *Participant* of the EU Code of Conduct for Data Centres 2010

Green ICT Winner of Green Gown Awards 2011



# Background to the RARE-IDC project

- **pts** consulting<sup>®</sup> World class. Local knowledge.
- Refurbishment of one of two main 75m<sup>2</sup> Data Centres for the University
- Funding had already been allocated in order to overcome several legacy risks
- We shared many issues with other Public Sector institutions
- Sector leader in environmental management consistently ranked in the top ten of the People and Planet Green League
- Joint Information Systems Committee (JISC) funding brought new constraints and new objectives:
  - "An exemplar of a Green Data Centre for the HE/FE Sector"
  - "A model for other institutions to follow and learn from"
  - "Meet the business need with capacity, resilience and economy for at least ten years"







# 3 Planning Green DataCentres

# Planning for Success

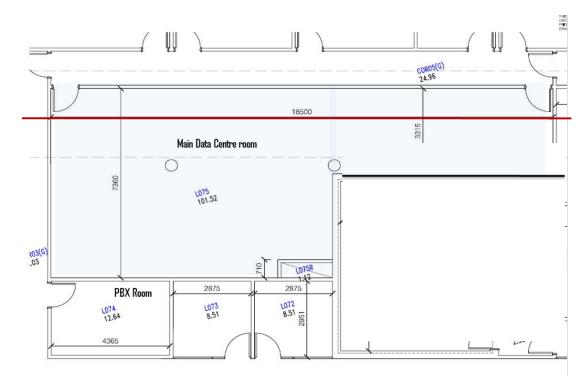


- Build Business Case on return on investment (ROI) Not Carbon savings
- Base specifications and requirements on best practice standards
- Have a contracted efficiency target
- Seek innovation ('cutting edge', not 'cookie cutter')
- Hold back a % for results (6 months to a year is normal)
- Put Estates on the project and/or on the Board
- Run everything as a project, no matter how small
- Identify your risks and mitigate them
- Log, track and resolve issues

## Project Process

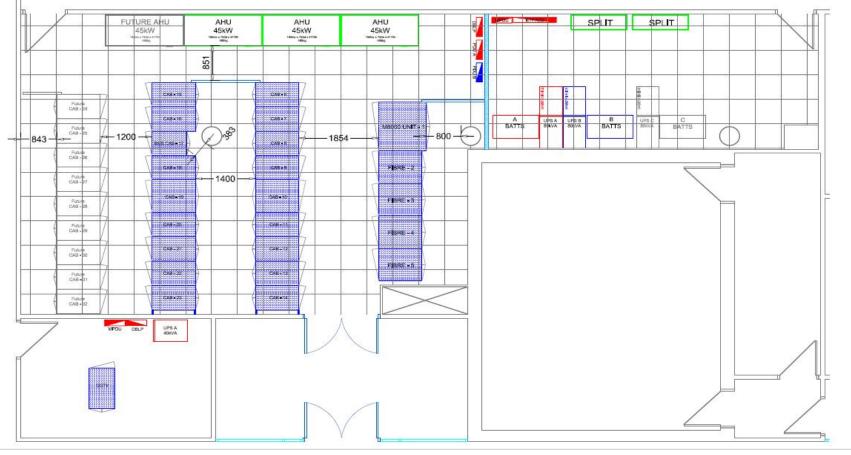


- Engaged closely with key stakeholders
- Bolstered our skills in best practices, cutting-edge sustainable technologies and thought leadership on reducing the carbon impact of Data Centres
- Researched a wide variety of sustainable technologies & best practices
- Design & Build Contract
- Pre-Qualification Questionnaire (PQQ) helped to reduce No. of appropriate responses
- The Invitation to Tender (I.T.T)
  - Included Best Practices (EU Code of Conduct for Data Centres)
  - British & International Standards (TIA942, etc.)
  - Would now include reference to EN50600
- Interview with top 4 Suppliers
- M&E Consultant engaged to challenge designs
- Simplification of proposals for Board approval






# 4 Best Practice Solutions


# Existing Challenges

- Pillars
- Riser
- Capacity
- Contamination from work areas
- Overhead bulkhead
- Lack of under floor capacity (only 250mm)
- Legacy incorrect (and dangerous) power cabling
- Limited plant space
- Restricted external build space
- "Meet-Me" point for all network cabling
- No external walls
- No segregation of duties





#### New Data Centre Design

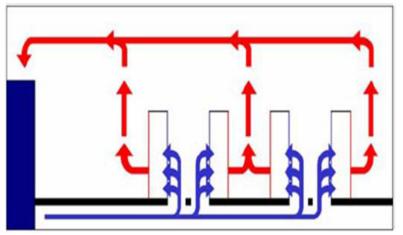




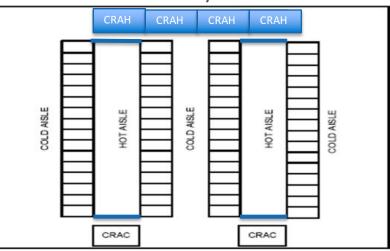


## Room Layout

#### Practice


- Hot Aisle / Cold Aisle
- Containment
- Blanking panels
- No shelf mounted equipment
- Route cables away from fans
- Raised floor
- Tile grommets
- Position of cold aisle relative to CRAH
- Dust mat

#### Impact


- Separate hot and cold air streams
- Increase efficiency of CRAH / CRAC
- Reduce / remove "hot spots"
- Improve air circulation / flow
- Prevent fan failure / filter ineffectiveness



# Hot Aisle / Cold Aisle Configurations



#### Example Traditional Layout

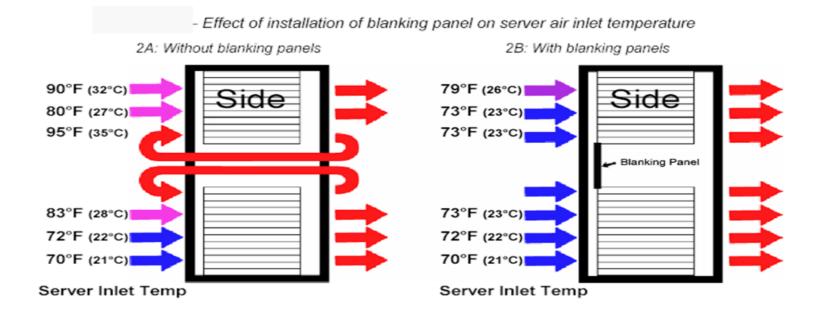


#### RARE-IDC Layout



## Room Layout

#### Practice


- Hot Aisle / Cold Aisle
- Containment
- Blanking panels
- No shelf mounted equipment
- Route cables away from fans
- Raised floor
- Tile grommets
- Position of cold aisle relative to CRAH
- Dust mat

#### Impact

- Separate hot and cold air streams
- Increase efficiency of CRAH / CRAC
- Reduce / remove "hot spots"
- Improve air circulation / flow
- Prevent fan failure / filter ineffectiveness



# Blanking Panel Effectiveness







## Room Layout

#### Practice

- Hot Aisle / Cold Aisle
- Containment
- Blanking panels
- No shelf mounted equipment
- Route cables away from fans
- Raised floor
- Tile grommets
- Position of cold aisle relative to CRAH
- Dust mat

#### Impact

- Separate hot and cold air streams
- Increase efficiency of CRAH / CRAC
- Reduce / remove "hot spots"
- Improve air circulation / flow
- Prevent fan failure / filter ineffectiveness

Furniture & Fittings

## Practice

- T5 Low-energy lighting
- PIR
- Colour of racks
- Provision for additional capacity but don't build it!

## Impact

- Reduce lighting requirements
- Reduced facility power cost
- Power and cool only where needed

19



19





# Electrical configuration

#### Practice

- Parallel UPSs
  - On-line Interactive
  - Dual Conversion
- Multiple Power Distribution Boards (PDBs)
- Power Factor
- TNSS Filters
- Phase balancing
- Generator

### Impact

- Clean mains supply
- Redundancy of supply
- Stability of supply
- Continuity of supply



# **Cooling Effectiveness**

#### Practice

#### "free air"

- Direct Free Air
- Indirect Free Air
- Direct Water Free Air
- Indirect Water Free Air
- Sorption cooling (absorption / adsorption)
- Variable speed fans
- Humidifiers
- Immersion cooling
- Waste heat recycling

#### Impact

- Use ambient air to extract cooling
- Don't dump all waste heat into environment
- Reduced cost of cooling
- Reduced operating cost of building
- Transferral of thermal energy

# Environment

#### Practice

- Dust free
- Dry bulb inlet temp of 25-26oC
- Relative humidity of target 50% +/- 20%
- Turn off unused servers / consolidation / virtualisation
- "Lights Out" lighting only where needed and when needed
- Separate UPS plant area

#### Impact

- Reduced fan/filter failure
- Reduced cost of facility
- Reduced cost of cooling
- Cooling appropriate to equipment

22





Virtualisation and Consolidation

- Turned off old servers
- Consolidated & virtualised existing services
- Reduced physical footprint
- Reduced energy (and hence, Carbon) footprint
- All new apps evaluated against virtualised environment by default
- Server utilisation rates moved from 4% -> 25% (average)
- Over 3 years saved approximately £340,000 in Capital costs & £36,000/yr Operating Expenses



# Four "M"s of Data Centre Management

## Practice

- Meter
- Monitor
- Maintain
- Manage

## Impact

- Understand your Data Centre "profile"
- Reduced cost of cooling
- Improved reliability of components and infrastructure
- Early and easier diagnosis of issues leading to speedier resolutions



Change Management (ITIL)

- The Data Centre cannot be considered a constant
- Change can wreak untold damage on efficiency and effectiveness
- Plan for change and understand the impact

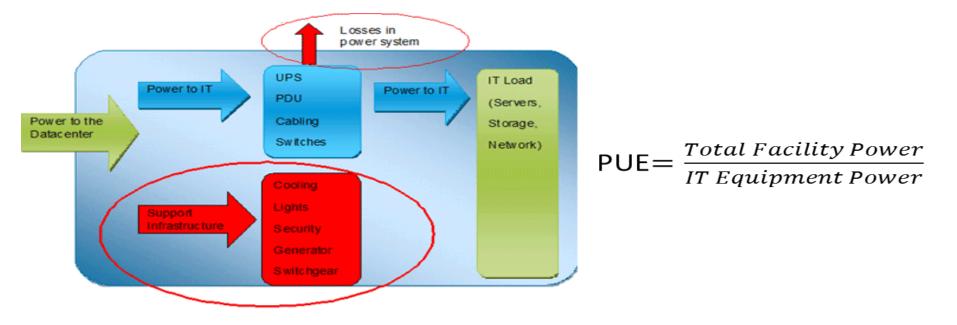






# 5 Measuring Success

Results



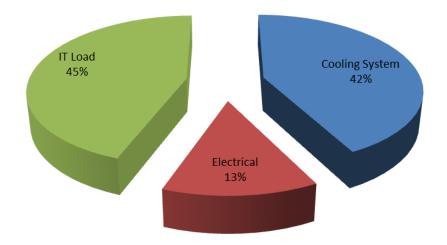

| Energy Consumed Per<br>Hour | Before:      | After:       |
|-----------------------------|--------------|--------------|
| Total IT Load               | 120kW        | 120kW        |
| Total Facility Load         | 264kW        | 146kW        |
| Electricity used per Year   | 2,312,640KWh | 1,282,464kWh |
| Annual Carbon Footprint     | 1,394 Tons   | 773 Tons     |

| Reduction in | CO2 Emissions | Equivalent to    |
|--------------|---------------|------------------|
| 1 Year       | 621 Tons      | 117 Fewer Cars   |
| 5 Years      | 3,106 Tons    | 586 Fewer Cars   |
| 10 Years     | 6,212 Tons    | 1,172 Fewer Cars |

### Power Usage Effectiveness







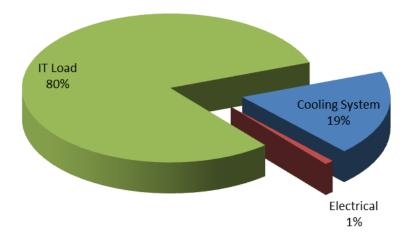

# Original Energy Breakdown

- Power Usage Effectiveness (PUE) approximated at 2.2
- IT Load at 45%
- Cooling System taking up 42% of total
- Power
- Electrical usage significant at 13%



#### Before Data Centre Energy Usage






## Energy Use Post-Project

- PUE down to 1.19<sub>L2,MD</sub> 1.33<sub>L2,MD</sub>
  Target = 1.22 Actual = 1.25<sub>L2,MD</sub>
- IT Load increased from 45% to 80%
- Cooling usage decreased from 42% to 19%
- Facility electrical usage decreased from 13% to 1% (UPS losses, lighting, etc.)



#### After Data Centre Energy Usage





# Successful Outcomes

- pts | consulting<sup>®</sup> World class. Local knowledge.
- Capability of project to act as an exemplar to the wider market in relation to the issues of the smaller data centre
  - The first University in Europe to achieve compliance against the EU Code of Conduct for Data Centres
  - Our pathfinder project enables others to follow our success and apply the lessons we've learned along the way
  - Refurbishment not new Build
  - **Re-use** of some Equipment
  - **"Free Air" Cooling** for 86% of the year (based on local weather conditions)
  - Increase in capacity of 69% & a 55% reduction in the carbon footprint of the Data Centre
  - Operational cost savings of **£186,000 per annum** (inc Carbon cost £12/Tonne CO2)
  - Using a contained Hot Aisle configuration, waste heat is recycled into the building's hot water supply
  - Worked with **JISC** to further EU-wide knowledge-sharing through the e-infranet project
  - Still disseminating **Best Practice** through the EU-funded EURECA project





# Thank You

Blogs: http://blogs.hertsac.uk/rare-idc/ http://blogs.hertsac.uk/carbs/ PTS Consulting Group 60 New Broad Street, London, EC2M 1JJ

www.ptsconsulting.con